University of Ljubljana Faculty of Medicine

Stress promotes lipid droplet accumulation in astrocytes

Anemari Horvat

Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine,
University of Ljubljana, Ljubljana, Slovenia

Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia

Neuron-glia coupling of glucose and lipid metabolism in the brain

Regulation of brain energy metabolism – bidirectional communication between astrocytes and neurons.

Astrocytes metabolically support neurons with nutrients (e.g., glucose, lactate, free fatty acids).

Astrocyte to neuron lactate shuttle (Pellerin, 1994)

- → glucose uptake and lactate production via aerobic glycolysis.
 - ! The production of lactate in glial cells is regulated by neuronal activity.

In neurons, lactate can

- be used as a fuel in oxidative metabolism (Pellerin and Magistretti, 2016) or
- 2) serve as a substrate for *de novo* synthesis of FFAs (loannou et al., 2019).

Smolič et al. 2021, Antioxidants

Lipid droplets are predominantly found in glial cells

Excessive FFAs can be lipotoxic for NEURONS.

FFAs are **transferred to astrocytes** and stored in **LIPID DROPLETS** (LDs) (loannou et al., 2019).

LIPID DROPLETS

- storage organelles surrounded by a phospholipid monolayer and proteins
- composed of neutral lipids
- assembly involves ER-resident proteins (i.e., DGAT1 and DGAT2)
- provide substrates for energy metabolism, building blocks for membranes and protection against lipotoxicity

Olzmann and Carvalho 2019, Nature Reviews

Lipid droplets are present in resting astrocytes

Scale bars: 10 μm Scale bars (insets): 5 μm

High colocalization of Nile Red-labelled LDs with perilipin-2 and BODIPY.

Astroglial lipid droplets are positioned near mitochondria and ER

Smolič et al. 2021, Glia

Nutrient and hypoxic stress trigger LD accumulation in astrocytes in vitro

Nutrient stress:

- partial/complete nutrient deprivation (10 and 0 mM glucose)
- excess FFAs (300 µM oleic acid (OA))
- Excess L-lactate (20 mM L-lac)

Hypoxic stress:

o 1% pO₂

Nutrient and hypoxic stress (24 h exposure):

- increased LD area
- increased number of LDs/cell
- increased LD perimeter and diameter (nutrient stress only)

*P < 0.05 (ANOVA, Dunn's test)

Nutrient stress triggers LD accumulation in astrocytes in situ

Nutrient stress:

- partial/complete nutrient deprivation (10 and 0 mM glucose)
- excess FFAs (300 µM oleic acid (OA))
- Excess L-lactate (20 mM L-lac)

Hypoxic stress:

o 1% pO₂

Nutrient stress (24 h exposure):

increased LD area in hippocampal and cortical astrocytes.

Scale bars: 10 µm *P < 0.05 (ANOVA, Dunn's test)

Smolič et al. 2021, Glia

Inhibition of DGAT1 and DGAT2 decreases number of astrocytes and LD content

Dunn's test)

D1i – DGAT1 inhibitor (10 μ M) **D2i** – DGAT2 inhibitor (10 μM)

Attenuation of de novo LD biogenesis by inhibitors of DGAT1 and DGAT2 enzymes (24 h exposure):

- reduced number of astrocytes by ~40%
- decreased LD content by ~80%
- decreased LD content in cells deprived of glucose (starvation)

Accumulation of LDs in astrocytes is the result of de novo biogenesis of LDs.

LD turnover is important for cell survival and/or proliferation.

In vivo nutrient and hypoxic stress trigger LD accumulation in the fly brain

In vivo exposure of *Drosophila melanogaster* to starvation and hypoxic stress (24 h):

- 1) increased LD area and number in the fly brain
- the percentage of LD-associated glial cells increased by 46%

Adrenergic activation triggers LD accumulation in astrocytes in vitro

Noradrenergic system in the human brain

Leanza, Gulino and Zorec 2018, Frontiers in Molecular Neuroscience

Adrenergic receptor (AR)	Agonist	Antagonist
α_1 -AR, α_2 -AR, β -AR	NA	
$β$ -AR (G_s proteins, $↑$ cAMP)	Iso	Prop
α_2 -AR (G _i proteins, \checkmark cAMP)	Dex	Atip
α_1 -AR (G _q proteins, \uparrow Ca ²⁺)	PE	Tera

Noradrenaline and selective β-AR agonist isoprenaline (24 h exposure):

- 1) increased LD area
- 2) NA-mediated increase was attenuated in the presence of AR antagonists

Noradrenaline increases LD accumulation in cultured astrocytes through β-AR activation.

Adrenergic activation triggers LD accumulation in astrocytes in situ

Noradrenaline and selective β - and α_2 -AR agonist isoprenaline and dexmedetomidine, respectively (24 h exposure):

- 1) increased LD area
- 2) NA-mediated increase was attenuated in the presence of β-AR antagonist

Noradrenaline increases LD accumulation in brain tissue astrocytes through β - and α_2 -AR activation.

*P < 0.05, **P < 0.01 and ***P < 0.001 vs. Ctrl (ANOVA, Dunn's test) *P < 0.05 vs. NA (ANOVA, Dunn's test)

Smolič et al. 2021, Glia

Conclusions

Thank you for your attention!

Institute of Pathophysiology, LN-MCP

Prof. dr. Nina Vardjan

Acad. prof. dr. Robert Zorec

Dr. Tina Smolič

Dr. Petra Tavčar Verdev

Urška Černe

Ana Halužan Vasle

Prof. dr. Marko Kreft

Prof. dr. Jernej Jorgačevski

Prof. dr. Helena H. Chowdhury

Dr. Matjaž Stenovec

Dr. Maja Potokar

Dr. Samo Pirnat

Dr. Katja Fink

Miha Pate

Primož Runovc

Institute of Cell Biology, Ljubljana

Prof. dr. Mateja Erdani Kreft

Dr. Larisa Tratnjek

Dr. Nicole Scholz

University of Leipzig

UNIVERSITÄT LEIPZIG

Medizinische Fakultät

Institute of Cell Biology, Münster

Dr. rer. nat. Maja Matis

Jožef Stefan Institute

Assoc. prof. dr. Toni Petan

o celicabiomedical

Frika Rus

Zala Smole

Maja Žugec

Ena Begić

Borut Furlani

Julijan Vršnik

Danaja Kuhanec

Kaja Belko Parkel

University of Ljubljana Faculty of Medicine

Funding:

